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Abstract

In view of the practical importance of the drift-flux model for two-phase flow analysis in general and in the analysis

of nuclear-reactor transients and accidents in particular, the kinematic constitutive equation for the drift velocity has

been studied for various two-phase flow regimes. The constitutive equations that specify the relative motion between

phases in the drift-flux model has been derived by taking into account the interfacial geometry, the body-force field, the

shear stresses, the interfacial momentum transfer and the wall friction, since these macroscopic effects govern the

relative velocity between phases. A comparison of the models with existing experimental data shows a satisfactory

agreement.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Two-phase flows always involve some relative mo-

tion of one phase with respect to the other; therefore, a

two-phase-flow problem should be formulated in terms

of two velocity fields. A general transient two-phase-

flow problem can be formulated by using a two-fluid

model [1,2] or a drift-flux model [3,4], depending on the

degree of the dynamic coupling between the phases. In

the two-fluid model, each phase is considered separately;

hence the model is formulated in terms of two sets of

conservation equations governing the balance of mass,

momentum, and energy of each phase. However, an

introduction of two momentum equations in a formu-

lation, as in the case of the two-fluid model, presents
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considerable difficulties because of mathematical com-

plications and of uncertainties in specifying interfacial

interaction terms between two phases [1,2]. Numerical

instabilities caused by improper choice of interfacial-

interaction terms in the phase-momentum equations are

common; therefore careful studies on the interfacial

constitutive equations are required in the formulation of

the two-fluid model.

These difficulties associated with a two-fluid model

can be significantly reduced by formulating two-phase

problems in terms of the drift-flux model, in which the

motion of the whole mixture is expressed by the mixture

momentum equation and the relative motion between

phases is taken into account by a kinematic constitutive

equation. Therefore, the basic concept of the drift-flux

model is to consider the mixture as a whole, rather than

as two separated phases. The formulation of the drift-

flux model based on the mixture balance equations is

simpler than the two-fluid model based on the separate

balance equations for each phase. The most important

assumption associated with the drift-flux model is that

the dynamics of two phases can be expressed by the
ed.
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Nomenclature

A cross-sectional area

c coefficient

C0 distribution parameter

C1 asymptotic value of C0

CD drag coefficient in multi-bubble system

C0
D drag coefficient in multi-bubble system

CD1 drag coefficient in single-bubble system

Cv distribution parameter for momentum

D diameter of a pipe

DH hydraulic equivalent diameter of flow

channel

DSm Sauter mean diametereDDSm non-dimensional Sauter mean diameter

EV prediction error

EM prediction error

F quantity

f friction factor

f ðhagiÞ function

FD drag force

g gravitational acceleration

h enthalpy
�hh mean enthalpy

j superficial velocity

Lo Laplace lengthfLoLo non-dimensional Laplace length

Md interfacial shear force

MF frictional pressure gradient in multi-bubble

system

MF1 frictional pressure gradient in single-bubble

system

Mi interfacial drag

Ms gradient of normal components of stress

tensor in axial direction

p pressure

Q volume flow rate

q conduction heat flux

qT turbulent heat flux

q00W wall heat flux

R pipe radius

rb bubble radius

Re Reynolds numberfReRe bubble Reynolds number

Re� Reynolds number in multi-bubble system

Re�1 Reynolds number in single-bubble system

t time

v velocity

v mean velocity

Vgj drift velocity of gas phase

Vgj mean drift velocity of gas phase

vr relative velocity between phases in multi-

bubble system

vr1 relative velocity between phases in single-

bubble system

z axial distance

Greek symbols

a phase fraction or void fraction

C mass source

Dhgf enthalpy difference

Dq density difference between phases

e energy dissipation rate per unit mass

l viscosity

m kinematic viscosity

nh heated perimeter

q density

r surface tension

s viscous stress

s
T

turbulent diffusion flux of momentum

si interfacial shear stress

szz normal viscous stress

sTzz normal turbulent stress

Ul energy dissipation

w property

Subscripts

f liquid phase

g gas phase

i value at interface

k k phase

l laminar flow

m weighted mean mixture property

t turbulent flow

w value at wall

z z-component

Mathematical symbols

h i area averaged value

hh ii weighted mean value

COV covariance
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mixture-momentum equation with the kinematic con-

stitutive equation specifying the relative motion between

phases. The use of the drift-flux model is appropriate

when the motions of two phases are strongly coupled.

In the drift-flux model, the velocity fields are ex-

pressed in terms of the mixture center-of-mass velocity

and the drift velocity of the vapor phase, which is the
vapor velocity with respect to the volume center of the

mixture. The effects of thermal non-equilibrium are ac-

commodated in the drift-flux model by a constitutive

equation for phase change that specifies the rate of mass

transfer per unit volume. Since the rates of mass and

momentum transfer at the interfaces depend on the

structure of two-phase flows, these constitutive equa-
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tions for the drift velocity and the vapor generation are

functions of flow regimes.

The drift-flux model is an approximate formulation

in comparison with the more rigorous two-fluid formu-

lation. However, because of its simplicity and applica-

bility to a wide range of two-phase-flow problems of

practical interest, the drift-flux model is of considerable

importance. In particular, the model is useful for tran-

sient thermohydraulic and accident analyses of both

LWR�s and LMFBR�s [4]. In view of the practical im-

portance of the drift-flux model for two-phase-flow an-

alyses, the constitutive equations that specify the relative

motion between phases in the drift-flux model have been

derived by Ishii [4] by taking into account the interfacial

geometry, the body-force field, shear stresses, and the

interfacial momentum transfer, since these macroscopic

effects govern the relative velocity between phases.

To derive the simplified one-dimensional constitutive

equations specifying the one-dimensional drift velocity,

Ishii [4] assumed that the average drift velocity due to

the local slip can be predicted by the same expression as

the local constitutive relations, provided the local void

fraction and the difference of the stress gradient are re-

placed by average values. The validity of the constitutive

equations developed by Ishii [4] has been supported by

various experimental data over various flow regimes and

a wide range of flow parameters. However, it is antici-

pated that such simplified one-dimensional constitutive

equations may not give a good prediction in some ex-

treme flow conditions such as very high liquid flow and

microgravity conditions where the effect of the wall

shear stress on the relative velocity between phases may

become significant. From this point of view, the purpose

of the present study is to derive more rigorous constit-

utive equations specifying the one-dimensional drift ve-

locity by taking into account the wall shear stress. The

derived constitutive equations are validated by existing

experimental data.
2. One-dimensional drift-flux model

Averaging over the cross-sectional area is useful for

complicated engineering problems involving fluid flow

and heat transfer, since field equations can be reduced to

quasi-one-dimensional forms. By area averaging, the

information on changes of variables in the direction

normal to the mean flow within a channel is basically

lost; therefore, the transfer of momentum and energy

between the wall and the fluid should be expressed by

empirical correlations or by simplified models. The ra-

tional approach to obtain a one-dimensional model is to

integrate the three-dimensional model over a cross-

sectional area and then to introduce proper mean values.

A simple area average over the cross-sectional area,

A, is defined by
hF i ¼ 1

A

Z
A
F dA; ð1Þ

and the void-fraction-weighted mean value is given by

hhFkii ¼ hakFki=haki: ð2Þ

Here, hF i and ak are a simple area average of a quantity

and the conventional time- (or ensemble)-averaged local

void fraction, respectively. The component k denotes

either the liquid (k¼ f) or the gas phase (k¼ g).

In the present analysis, the density of each phase, qg

and qf within any cross-sectional area is considered to be

uniform, so that qk ¼ hhqkii. For most practical two-

phase flow problems, this assumption is valid since the

transverse pressure gradient within a channel is rela-

tively small. The detailed analysis without this approx-

imation appears in Ref. [5]. Under the above simplifying

assumption, the average mixture density is given by

hqmi � hagiqg þ ð1� hagiÞqf : ð3Þ

The axial component of the weighted mean velocity

of phase k is

hhvkii ¼
hakvki
haki

¼ hjki
haki

: ð4Þ

Then, the mixture velocity is defined by

vm � hqmvmi
hqmi

¼
hagiqghhvgii þ ð1� hagiÞqfhhvfii

hqmi
; ð5Þ

and the volumetric flux is given by

hji � hjgi þ hjfi ¼ hagihhvgii þ ð1� hagiÞhhvfii: ð6Þ

The mean mixture enthalpy should also be weighted by

the density; thus,

hm � hqmhmi
hqmi

¼
hagiqghhhgii þ ð1� hagiÞqfhhhfii

hqmi
: ð7Þ

The vapor drift velocity of a gas phase is defined as the

velocity of the dispersed phase with respect to the vol-

ume center of the mixture:

Vgj � vg � j: ð8Þ

The appropriate mean drift velocity is defined by

Vgj � hhvgii � hji ¼ ð1� hagiÞðhhvgii � hhvfiiÞ
¼ hhVgjii þ ðC0 � 1Þhji; ð9Þ

where

hhVgjii �
hagVgji
hagi

; ð10Þ

and

C0 �
hagji
hagihji

: ð11Þ

The experimental determination of the above-defined

drift velocity is possible if the volume flow rate of each
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phase, Qk and the mean void fraction hagi are measured.

This is because Eq. (9) can be transformed into

Vgj ¼
hjgi
hagi

� ðhjgi þ hjfiÞ; ð12Þ

where hjki is given by hjki ¼ Qk=A. Furthermore, the

present definition of the drift velocity can also be used

for annular two-phase flows. Under the definitions of

various velocity fields, we obtain several important

relations, such as

hhvgii ¼ vm þ qf

hqmi
Vgj; ð13Þ

hhvfii ¼ vm � hagi
1� hagi

qg

hqmi
Vgj; ð14Þ

and

hji ¼ vm þ
hagiðqf � qgÞ

hqmi
Vgj: ð15Þ

In the drift-flux formulation, a problem is solved for hagi
and vm with a given constitutive relation for Vgj. Thus,
Eqs. (13) and (14) can be used to recover a solution for

the velocity of each phase after a problem is solved.

By area-averaging three-dimensional form of the

drift-flux model [2] and using the various mean values,

we obtain:

Mixture continuity equation:

ohqmi
ot

þ o

oz
ðhqmivmÞ ¼ 0: ð16Þ

Continuity equation for dispersed phase:

ohagiqg

ot
þ o

oz
ðhagiqgvmÞ ¼ hCgi �

o

oz

hagiqgqf

hqmi
Vgj

� �
:

ð17Þ
Mixture momentum equation:

ohqmivm
ot

þ o

oz
ðhqmivm2Þ

¼ � o

oz
hpmi þ

o

oz
hszz þ sTzzi � hqmigz �

fm
2D

hqmivmjvmj

� o

oz

hagiqgqf

ð1� hagiÞhqmi
Vgj

2

� �
� o

oz

X
k

COVðakqkvkvkÞ:

ð18Þ

Mixture enthalpy-energy equation:

ohqmihm
ot

þ o

oz
ðhqmihmvmÞ

¼ � o

oz
hqþ qTi þ q00Wnh

A
� o

oz

hagiqgqf

hqmi
Dhgf Vgj

� o

oz

hagiqgqf

hqmi
Dhgf Vgj

� �
� o

oz

X
k

COVðakqkhkvkÞ

þ ohqmi
ot

þ vm

�
þ
hagiðqf � qgÞ

hqmi
Vgj

�
ohqmi
oz

þ hUl
mi:

ð19Þ
Here, szz þ sTzz denotes the normal components of

the stress tensor in the axial direction and Dhgf is

the enthalpy difference between phases; thus, Dhgf ¼
hhhgii � hhhfii. gz, nh and Ul

m are the z-component of the

gravitational acceleration, the heated perimeter and the

mixture-energy dissipation, respectively. The covariance

terms represent the difference between the average of a

product and the product of the average of two variables

such that COVðakqkwkvkÞ � hakqkwkðvk � hhvkiiÞi where
wk represents the property of k phase. If the profile of

either wk or vk is flat, then the covariance term reduces to

zero. The term represented by fmhqmivmjvmj=ð2DÞ in Eq.

(18) is the two-phase frictional pressure drop. We note

here that the effects of the mass, momentum, and energy

diffusion associated with the relative motion between

phases appear explicitly in the field equations are ex-

pressed in terms of the mixture velocity. These effects of

diffusions in the present formulation are expressed in

terms of the drift velocity of the dispersed phase, Vgj.
This may be formulated in a functional form as

Vgj ¼ Vgjðhagi; hpmi; gz; vm; etc:Þ: ð20Þ

To take into account the mass transfer across the

interfaces, a constitutive equation for mass source for

gas phase, hCgi, should also be given. In a functional

form, this phase-change constitutive equation may be

written as

hCgi ¼ hCgi hagi; hpmi; vm;
ohpmi
ot

; etc:

� �
: ð21Þ

The above formulation can be extended to non-

dispersed two-phase flows, such as an annular flow,

provided a proper constitutive relation for a drift ve-

locity of one of the phases is given. In what follows, the

constitutive equations specifying the one-dimensional

drift velocity will be derived by taking into account the

wall shear stress.

3. One-dimensional drift velocity

3.1. Dispersed two-phase flow

3.1.1. Relative motion in single-bubble system in confined

channel

Recently, Tomiyama et al. [6] derived the relative

velocity in a confined channel by taking into account the

effect of a frictional pressure gradient due to a liquid

flow. In what follows, we shall summarize the result in a

simple form useful for the development of the drift

constitutive equation in multi-bubble systems.

By denoting the relative velocity of a single bubble in

an infinite medium by vr1 ¼ vg � vf1, we define the drag
coefficient by

CD1 � � 2FD
qfvr1jvr1jpr2b

; ð22Þ
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where FD and rb are the drag force and the radius of a

bubble, respectively. Clift et al. [7] indicated that the

effect of the pipe wall on CD1 is negligible if the ratio of

the bubble diameter, rd to the pipe radius, R, is less than
0.125. Hence, assuming the negligible effect of the pipe

wall on CD1, the momentum equation for the fully-

developed liquid flow can be written as

0 ¼ � dp
dz

�MF1 � qfgz; ð23Þ

where MF1 is the frictional pressure gradient given by

MF1 ¼ f
2D

qfhvfi
2
; ð24Þ

where f and D are the wall friction factor and the pipe

diameter, respectively. The momentum equation for the

bubble can be written as

0 ¼ � dp
dz

� 3

8

CD1qfvr1jvr1j
rb

� qggz: ð25Þ

Then from Eqs. (23) and (25), we obtain

vr1jvr1j ¼ 8

3

rb
CD1qf

ðDqgz þMF1Þ: ð26Þ
3.1.2. One-dimensional relative velocity of dispersed flow

in confined channel

For a dispersed two-phase flow, the averaged inter-

facial drag term could be given approximately by [8]

hMigi ¼ � 3

8

CD

hrbi
hagiqfhvrijhvrij: ð27Þ

The above approximate form is obtained based on the

experimental observation that the local relative velocity,

vr is comparatively uniform across a flow channel [9].

The one-dimensional interfacial drag force of the gas

phase, hMigi, can be derived from the one-dimensional

momentum equation by integrating the three-dimen-

sional momentum equation over the flow channel.

Under the assumption that the averaged pressure in the

bulk fluid and at the interface is approximately the same,

we obtain the three-dimensional momentum equation

as

oakqkvk
!

ot
þr � ðakqkvk

!vk
!Þ

¼ �akrpk þr � ak sk
�n

þ sk
T
�o

þ akqk~gg

þ vki
�!Ck þ Mik

�!�rak � si; ð28Þ

where s, s
T
and si are the viscous stresses, the turbulent

diffusion flux of momentum and the interfacial shear

stress, respectively. The subscript of ki denotes the value

at the interface for phase k.

By area-averaging Eq. (28), and making some sim-

plifications, which are applicable to most practical
problems, the following one-dimensional momentum

equation can be obtained [8]:

o

ot
hakiqkhhvkii þ

o

oz
Cvkhakiqkhhvkii

2

¼ �haki
o

oz
hhpkii þ

o

oz
hakihhskzz þ sTkzzii

� 4akwskw
D

� hakiqkgz þ hCkihhvkiii þ hMd
k i; ð29Þ

where akw and skw are the mean void fraction at the wall

and the wall shear stress, respectively. hMd
k i is the total

interfacial shear force given by

hMd
k i ¼ hMik �rak � sii: ð30Þ

In the convective term, the distribution parameter for

the k-phase momentum, Cvk, appears due to the differ-

ence between the average of a product of variables and

the product of averaged variables.

Under the steady-state condition without phase

change ðhCki ¼ 0Þ and with negligible transverse pres-

sure gradient, i.e., hhpfii ¼ hhpgii ¼ hhpmðzÞii, and the

assumption that the averaged pressure and stress in

the bulk fluid and at the interface are approximately the

same, the one-dimensional momentum equation for

phase k can be reduced from Eq. (29) to

0 ¼ �haki
o

oz
hhpmii � hakihMski �

4akwskw
D

� hakiqkgz þ hMiki; ð31Þ

where

hMski �
o

oz
hhskzz þ sTkzzii: ð32Þ

Consequently, we obtain

0 ¼ �hagi
o

oz
hhpmii � hagihMsgi �

4agwsgw
D

� hagiqggz þ hMigi; ð33Þ

and

0 ¼ �hafi
o

oz
hhpmii � hafihMsfi �

4afwsfw
D

� hafiqfgz þ hMifi: ð34Þ

However, from the macroscopic jump condition at the

interface, we have

hMigi þ hMifi ¼ 0: ð35Þ

Thus, by eliminating the interfacial forces from the

above two equations, we get

o

oz
hhpmii ¼ �qmgz � hMsmi �

4agwsgw
D

� 4afwsfw
D

; ð36Þ

where

hMsmi ¼ hagihMsgi þ hafihMsfi: ð37Þ
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From Eqs. (33) and (36), we obtain

hMigi ¼ �hagi Dqgzð1
�

� hagiÞ þ ðhMsmi � hMsgiÞ

þ 4afwsfw
D

� 1� hagi
hagi

4agwsgw
D

�
: ð38Þ

Without phase change, agw ffi 0 and afw ffi 1. Thus, Eq.

(38) can be simplified to

hMigi ¼ �hagi Dqgzð1
�

� hagiÞ þ ð1� hagiÞðhMsfi

� hMsgiÞ þ
4sfw
D

�
: ð39Þ

For a fully developed vertical flow, the stress distri-

bution in the fluid and in the dispersed phase should be

similar and the values of hMsgi and hMsfi are generally

small [4]; thus the effect of the shear gradient on the

mean local drift velocity can be neglected.

hMigi � �hagi Dqgzð1
�

� hagiÞ þ
4sfw
D

�
¼ �hagi½Dqgzð1� hagiÞ þMF�; ð40Þ

where

MF � 4sfw
D

¼
�
� dp

dz

�
F

: ð41Þ

Substituting Eq. (41) into Eq. (27) yields

hvrijhvrij ¼
8

3

hrbi
CDqf

fDqgzð1� hagiÞ þMFg: ð42Þ

From Eqs. (26) and (42), we get

CD1ðRe�1Þ
CDðRe�Þ

� hvri
vr1

� �2 Dqgz þMF1

Dqgzð1� hagiÞ þMF

; ð43Þ

where the Reynolds numbers are defined as

Re�1 ¼ 2rbqfvr1
lf

and Re� ¼ 2hrbiqfhvri
lm

: ð44Þ

Now let us assume that in the Newton regime a

complete similarity exists between CD1 based on Re�1
and CD based on Re� so that CD has exactly the same

functional form in terms of Re� as CD1 in terms of Re�1
[4]. We also assume that CD1=CD can be predicted by

the same expression as the local constitutive relation,

provided the local values of flow parameters are re-

placed by area-averaged values [4]. Then, we obtain

hhVgjii ¼ ð1� hagiÞhvri

¼ vr1ð1� hagiÞ3=2f ðhagiÞ
18:67

1þ 17:67f ðhagiÞ6=7
;

ð45Þ

where f ðhagiÞ is defined by

f ðhagiÞ ¼
lf

l
Dqgzð1� hagiÞ þMF

Dqgz þMF1

� 	1=2

: ð46Þ

m

Here, lm=lf is the ratio of mixture viscosity to fluid

viscosity. For lg � lf the viscosity ratio is approxi-

mated by [4]

lm

lf

¼ ð1� hagiÞ�1: ð47Þ

The distorted-bubbly-flow regime is characterized by

the distortion of the bubble shapes and irregular mo-

tions. In this regime, the terminal velocity may be in-

dependent of bubble size [4]. From this it can be seen

that the drag coefficient, CD1, may not depend on the

viscosity, but should be proportional to the radius of the

bubble. Physically, this indicates that the drag force is

governed by the distortion and swerving motion of the

bubble, and the change of the bubble shape is toward an

increase in the effective cross-section. Therefore, CD1
should be scaled by the mean radius of the bubble rather

than the Reynolds number [4]. Then,

CD1 ¼ 4

3
rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dqgz þMF1

r

r
; ð48Þ

where r is the surface tension. From Eqs. (26) and (48),

we get

vr1 ¼
ffiffiffi
2

p ðDqgz þMF1Þr
q2
f

� 	1=4

: ð49Þ

In considering the drag coefficient for a multi-bubble

system with the same radius, we must take into account

the restrictions imposed by the existence of other bubbles

on the flow field [4]. Because of the random character-

istics of the turbulent eddies and bubble oscillations, a

bubble sees the increased drag due to other bubbles in

essentially the same way as in Newton�s regime for a

solid-particle system where CD1 is constant under a

turbulent flow condition.

Hence, we postulate that, regardless of the differences

in CD1 in these regimes, the effect of increased drag can

be predicted by the same expression [4]. Under this as-

sumption, Eq. (45) may also be used for the distorted-

bubbly-flow regime with the appropriate vr1.

hhVgjii ¼
ffiffiffi
2

p ðDqgz þMF1Þr
q2
f

� 	1=4

	
18:67ð1� hagiÞ5=2 Dq gzð1�hagiÞþMF

Dq gzþMF1

n o1=2

1þ 17:67ð1� hagiÞ6=7 Dq gzð1�hagiÞþMF

Dq gzþMF1

n o3=7
:

ð50Þ

In a churn-turbulent-flow regime, some bubbles

should have reached the distortion limit corresponding

to the cap-bubble transition. This limit can be given by

theWeber-number criterion based on the drift velocity as

2qfhVgji
2hrbi

r
¼ 8: ð51Þ
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Due to the entrainment of bubbles in a wake of other

bubbles and the coalescence and disintegration caused

by the turbulence, the average motion of the dispersed

phase is mainly governed by those bubbles that satisfy

the Weber-number criterion. Thus, the drag force for a

churn-turbulent flow is given by [4]

FD ¼ �1
2
C0

DqfhVgjijhVgjijphrbi
2

with C0
D ¼ 8

3
: ð52Þ

Therefore, in a standard form,

FD ¼ �1
2
CDqfhvrijhvrijphrbi

2
with CD ¼ 8

3
ð1� hagiÞ2:

ð53Þ

Hence, by balancing the drag force with the pressure

force, we obtain

hhVgjii ¼
ffiffiffi
2

p ðDqgz þMF1Þr
q2
f

� 	1=4

	 Dqgzð1� hagiÞ þMF

Dqgz þMF1

� 	1=4

: ð54Þ

When the volume of a bubble is very large, the shape

of the bubble is significantly deformed to fit the channel

geometry. The diameter of the bubbles becomes ap-

proximately that of the pipe with a thin liquid film

separating the bubbles from the wall. The drag force for

a slug flow is given by [4]

FD ¼ �1
2
CDqfhvrijhvrijphrbi

2
with CD ¼ 9:8ð1� hagiÞ3:

ð55Þ

Hence, by balancing the drag force with the pressure

force and the assumed bubble radius to be hrbi � D=2
[4], we obtain

hhVgjii ¼ 0:37
fDqgð1� hagiÞ þMFgD

qfð1� hagiÞ

� �1=2
: ð56Þ

Then, we summarize the obtained results as follows.

Bubbly flow:

hhVgjii ¼
ffiffiffi
2

p ðDqgz þMF1Þr
q2
f

� 	1=4

	
18:67ð1� hagiÞ5=2 Dq gzð1�hagiÞþMF

Dq gzþMF1

n o1=2

1þ 17:67ð1� hagiÞ6=7 Dq gzð1�hagiÞþMF

Dq gzþMF1

n o3=7
:

ð57Þ

Slug flow:

hhVgjii ¼ 0:37
fDqgzð1� hagiÞ þMFgD

qfð1� hagiÞ

� �1=2
: ð58Þ

Churn flow:

hhVgjii ¼
ffiffiffi
2

p ðDqgz þMF1Þr
q2
f

� 	1=4

	 Dqgzð1� hagiÞ þMF

Dqgz þMF1

� 	1=4

: ð59Þ
For gravity dominant flows, the above equations are

simplified to Ishii�s equations [4] as follows:

Bubbly flow:

hhVgjii ¼
ffiffiffi
2

p Dqgzr
q2
f

� �1=4

ð1� hagiÞ1:75: ð60Þ

Slug flow:

hhVgjii ¼ 0:37
DqgzD
qf

� �1=2

: ð61Þ

Churn flow:

hhVgjii ¼
ffiffiffi
2

p Dqgzr
q2
f

� �1=4

: ð62Þ
3.2. Annular two-phase flow

In annular two-phase flows, the relative motions

between phases are governed by the interfacial geome-

try, the body-force field, and the interfacial momentum

transfer. The constitutive equation for the gas-drift ve-

locity in annular two-phase flows has been developed by

taking into account those macroscopic effects of the

structured two-phase flows. Ishii [4] derived the aver-

aged drift velocity as

Vgj ¼ hhVgjii þ ðC0 � 1Þhji

¼ 1� hagi

hagi þ 1þ75ð1�hagiÞffiffiffiffiffiffi
hagi

p qg
qf

� 	1=2

	 hji
 

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DqgzDð1� hagiÞ

0:015qg

s !
: ð63Þ

This expression may further be simplified for qg=qf � 1

as

Vgj �
1� hagi

hagi þ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
qg=qf

q hji
 

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DqgzDð1� hagiÞ

0:015qg

s !
:

ð64Þ
4. Distribution parameter

4.1. Dispersed two-phase flow

Ishii [4] developed a simple correlation for the dis-

tribution parameter in bubbly-flow regime. Ishii first

considered a fully developed bubbly flow and assumed

that the distribution parameter would depend on the

density ratio, qg=qf and on the Reynolds number, Re
defined by hjfiD=mf . As the density ratio approaches

unity, the distribution parameter should become unity.



4942 T. Hibiki, M. Ishii / International Journal of Heat and Mass Transfer 46 (2003) 4935–4948
Based on the limit and various experimental data in fully

developed flows, the distribution parameter was given

approximately by

C0 ¼ C1ðReÞ � fC1ðReÞ � 1g
ffiffiffiffiffiffiffiffiffiffiffiffi
qg=qf

q
; ð65Þ

where C1 is the asymptotic value of C0. Here, the den-

sity group scales the inertia effects of each phase in a

transverse void distribution. Physically, Eq. (65) models

the tendency of the lighter phase to migrate into a

higher-velocity region, thus resulting in a higher void

concentration in the central region.

For a laminar flow, C1;l is 2 [4], but due to the large

velocity gradient, C0 is very sensitive to hagi at low void

fractions. Recently, Hibiki and Ishii [10] developed C1;t

correlation in a turbulent bubbly flow as

C1;t ¼ 1:2f1� expð�22hDSmi=DÞg; ð66Þ
where DSm is the bubble Sauter mean diameter, which

can be predicted by the following correlation [11].eDDSm ¼ 1:99fLoLo�0:335fReRe�0:239; ð67Þ

where eDDSm � hDSmi=Lo, Lo �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðgDq

p
Þ, fLoLo � Lo=DH

and fReRe � ððhei1=3Lo1=3ÞLoÞ=mf . The energy dissipation

rate per unit mass, e, can be given by

hei ¼ ghjgi expð�0:000584ReÞ þ hji
qm

�
� dp

dz

�
F

	 f1� expð�0:000584ReÞg: ð68Þ

The pressure loss per unit length due to friction can be

calculated from Lockhart-Martinelli�s correlation [12].

The applicability of Eq. (66) has been confirmed for the

experimental conditions such as 0:2626 hjfi6 5:00 m/s,

25:46D6 60 mm, and 1.40 mm 6 hDSmi. Since Eq. (66)
is rather complicated and its applicability is limited by

the validated experimental range, C1;t ¼ 1:2 proposed

by Ishii [4] or C1;t ¼ 1:05 based on available distribution

parameters determined by local flow measurements [10]

may still be utilized by accepting a certain prediction

error for simplicity.

Taking account of the flow transition from a laminar

flow to a turbulent flow, C1 in bubbly-flow regime may

be approximated by

C1 ¼ C1;l expðcReÞ þ C1;tf1� expðcReÞg; ð69Þ

The coefficient, c, may roughly be estimated to be

)0.000584 by the condition of expðcReÞ ¼ 0:5 at

Re ¼ 1189. Thus,

C1 ¼ 2:0 expð�0:000584ReÞ þ 1:2f1� expð�22hDSmi=DÞg
	 f1� expð�0:000584ReÞg:

ð70Þ

Experimental data suggest that C1 in slug, and churn

flows may be approximated to be 1.2 [4]. Then, we ob-

tain the following results.
Bubbly flow:

C0 ¼ 2:0 expð�0:000584ReÞ þ 1:2f1� expð�22hDSmi=DÞg
	 f1� expð�0:000584ReÞg � ½2:0 expð�0:000584ReÞ

þ 1:2f1� expð�22hDSmi=DÞg

	 f1� expð�0:000584ReÞg � 1�
ffiffiffiffiffi
qg

qf

r
: ð71Þ

Slug flow:

C0 ¼ 1:2� 0:2
ffiffiffiffiffiffiffiffiffiffiffiffi
qg=qf

q
: ð72Þ

Churn flow:

C0 ¼ 1:2� 0:2
ffiffiffiffiffiffiffiffiffiffiffiffi
qg=qf

q
: ð73Þ

The validity of the above equations has been confirmed

in the previous studies [4,10].

4.2. Annular two-phase flow

In separated flows, local relative velocity between

two phases can not be defined. If small liquid droplets

are entrained in the gas core or small gas bubbles are

entrained in the liquid film, local relative velocity may be

approximated to be zero, resulting in hhVgji � 0. Thus,

we have

C0 �
1� hagi

hagi þ 1þ75ð1�hagiÞffiffiffiffiffiffi
hagi

p qg
qf

� 	1=2
1

0@ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dq gzDð1�hagiÞ

0:015qg

q
hji

1Aþ 1:

ð74Þ

This expression may further be simplified for qg=qf � 1

as

C0 �
1� hagi

hagi þ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
qg=qf

q 1

0@ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dq gzDð1�hagiÞ

0:015qg

q
hji

1Aþ 1: ð75Þ

The validity of the above equation has been confirmed in

the previous study [4].
5. Results and discussions

5.1. Example computation of newly developed one-dimen-

sional drift velocity

In this section, an example computation of the newly

developed constitutive equations for one-dimensional

drift velocity will be performed for dispersed two-phase

flows. The figure at the upper left of Fig. 1 shows an

example computation of the newly developed constitu-

tive equations for one-dimensional drift velocity in the

hjfi vs. hhVgjii plane. The computational conditions are
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Fig. 1. Example computation of newly developed constitutive equations for drift velocity.
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D ¼ 10:0 mm and hagi ¼ 0:10. The value of D ¼ 10:0
mm is about the hydraulic equivalent diameter of the

flow channel in 17 · 17 bundle PWR fuel assembly or

9· 9 bundle BWR fuel assembly. Heavy solid, broken

and dotted lines indicate the void-fraction-weighted

mean drift velocity calculated from the newly developed

equations for bubbly, slug, and churn flows, respec-

tively. On the other hand, thin solid, broken and dotted

lines indicate the void-fraction-weighted mean drift ve-

locity calculated from Ishii�s equations [4] for bubbly,

slug, and churn flows, respectively. The values of hhVgjii
calculated by Ishii�s equations are independent of the

superficial liquid velocity, whereas the values calculated

by the newly developed equations are increased by the

superficial liquid velocity due to the increased frictional

pressure gradient. The figure at the upper right of Fig. 1

shows the difference between hhVgjii calculated by the

newly developed equations and Ishii�s equations for the
example computation shown in the figure at the upper

left. The difference between hhVgjii calculated by the

newly developed equations and Ishii�s equations is de-

fined by

EV ½%� ¼ jhhVgjii � hhVgjiiIshiij
hhVgjii

	 100; ð76Þ
where the subscript of Ishii means the value calculated

by Ishii�s equation for respective flow regime. In bubbly-

flow and churn-flow regimes, the difference between

hhVgjii calculated by the newly developed equations and

Ishii�s equations for hjfi6 2:0 m/s and hjfi6 3:3 m/s are

estimated to be within ±10% and ±20%, respectively. In

slug-flow regime, the difference between hhVgjii calcu-

lated by the newly developed equations and Ishii�s
equations for hjfi6 1:0 m/s and hjfi6 1:7 m/s are esti-

mated to be within ±10% and ±20%, respectively. Thus,

for relatively low liquid velocity, the difference between

hhVgjii calculated by the newly developed equations and

Ishii�s equations is insignificant. In such flow conditions,

Ishii�s equations, which is the approximate form of the

newly developed equations, give fairly good estimations

of hhVgjii as already proved experimentally [4,10].

The figure at the lower left of Fig. 1 shows an ex-

ample computation of the newly developed constitutive

equations for one-dimensional drift velocity in the hjfi
vs. Vgj plane. Heavy solid, broken and dotted lines in-

dicate the mean drift velocity calculated by Eq. (9) with

the newly developed equations for bubbly, slug, and

churn flows, respectively. On the other hand, thin solid,

broken and dotted lines indicate the mean drift veloc-

ity calculated by Eq. (9) with Ishii�s equations [4] for
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bubbly, slug, and churn flows, respectively. In this ex-

ample computation, Eq. (71) is expansively used for the

estimation of the distribution parameter for bubbly-flow

regime. As can be seen from Eq. (71), the distribution

parameter is dependent on the superficial liquid velocity.

For example, as the superficial liquid velocity increases

from 0.50 to 10 m/s keeping the void fraction at 0.10, the

value of the distribution parameter for bubbly-flow re-

gime estimated by Eq. (71) decreases from 1.24 to 1.11.

This tendency agrees with the experimental observation

such that the void fraction distribution becomes flatter

for higher liquid velocity [13]. Eqs. (72) and (73) are used

for the estimations of the distribution parameters for

slug-flow and churn-flow regimes, respectively. Since the

values of the distribution parameter for all flow regimes

tested in this calculation are larger than unity, the values

of Vgj are increased by increasing the mixture volumetric

flux (see Eq. (9)). The figure at the lower right of Fig. 1

shows the difference between Vgj calculated by the newly

developed equations and Ishii�s equations for the ex-

ample computation shown in the figure at the lower left.

The difference between Vgj calculated by the newly de-

veloped equations and Ishii�s equations is defined by

EM ½%� ¼ jVgj � VgjIshiij
Vgj

	 100: ð77Þ

In bubbly-flow and churn-flow regimes, the difference

between Vgj calculated by the newly developed equations

and Ishii�s equations is about ±10% even for high mix-

ture volumetric flux such as hji ¼ 10 m/s. In slug-flow

regime, the difference between Vgj calculated by the

newly developed equations and Ishii�s equations is lower
than ±10% for hji6 4:18 m/s. Since the term of

ðC0 � 1Þhji for slug-flow and churn-flow regimes is

dominant in determining Vgj for high mixture volumetric

flux, the prediction error in hhVgjii may not affect the

prediction error in Vgj significantly. As a consequence,

for slug-flow and churn-flow regimes Ishii�s equations,

which is the approximate form of the newly developed

equations, give fairly good estimations of Vgj even for

relatively high mixture volumetric flux. However, in

bubbly-flow regime, the distribution parameter can be

unity or negative. Thus, since the term of ðC0 � 1Þhji for
bubbly-flow regime can be comparable to hhVgjii even

for high mixture volumetric flux, the prediction error in

Vgj may reach the prediction error in hhVgjii, see figure at
the upper right of Fig. 1.
5.2. Verification of newly developed constitutive equations

for drift velocity

An accurate measurement of the relative velocity

between phases in various flow regimes is indispensable

to evaluate the newly developed constitutive equations

for drift velocity experimentally. However, no data bases
on the relative velocity except bubbly-flow regime are

available due to the difficulty of the accurate measure-

ment. The contribution of the drift velocity to the gas

velocity or the contribution of hhVgjii to Vgj would be

rather small for flow regimes such as slug, churn, and

annular flow regimes, whereas it would be significant for

bubbly-flow regime. Thus, it is important to evaluate the

newly developed constitutive equations for drift velocity,

particularly, in bubbly-flow regime with drift velocities

determined from measured local flow parameters. Al-

though several data bases in bubbly-flow regime are

available for relatively low superficial liquid velocity

such as hjfi6 1:4 m/s [10], only two data bases in bub-

bly-flow regime [13,14] are available for relatively high

liquid velocity such as hjfiP 2:0 m/s where the difference

between the drift velocities calculated by the newly de-

veloped equations and Ishii�s equations will be marked.

These two data bases were obtained by the present

authors at the Thermal-hydraulics and Reactor Safety

Laboratory in Purdue University [13,14]. The present

authors measured local flow parameters of adiabatic air-

water bubbly flows in vertical pipes with inner diameters

of 25.4 and 50.8 mm. Local measurements of void

fraction and gas velocity were performed by using the

double sensor probe method. On the other hand, local

measurement of liquid velocity was conducted by using

hotfilm anemometry. Data was taken at three different

axial locations as well as fifteen radial positions. For

D ¼ 25:4 mm, a total of 75 (¼ 25· 3) data sets were

acquired consisting of 25 flow conditions and 3 axial

locations (z=D ¼ 12:0, 65.0, and 125) [14], and for

D ¼ 50:8 mm, a total of 54 (¼ 18· 3) data sets were

acquired consisting of 18 flow conditions and 3 axial

locations (z=D ¼ 6:00, 30.3, and 53.5) [13]. Thus, data

sets in developing and fully-developed flows are avail-

able. The detailed discussions of local flow parameters

are found in our previous papers [13,14].

Figs. 2 and 3 show the comparisons of drift velocities

predicted for bubbly and slug flows with the drift ve-

locities determined by Eq. (10) from local parameters of

fully-developed flows measured at z=D ¼ 125 in the 25.4-

mm diameter pipe and at z=D ¼ 53:5 in the 50.8-mm

diameter pipe, respectively. In these figures, the solid

and broken lines indicate the drift velocities calculated

by the newly developed equations and Ishii�s equations,
respectively. Unfortunately, the scatter of data points

appears to be rather large for relatively high liquid ve-

locity where the difference between the drift velocities

calculated by the newly developed equations and Ishii�s
equations will be marked. As can be seen from Eqs. (8)

and (10), the uncertainty of the void-fraction-weighted

mean drift velocity estimated from the measurement

would mainly be attributed to the measurement error of

the relative velocity between phases, which can be cal-

culated by subtracting the liquid velocity from the gas

velocity. When the measurement errors for gas and liq-
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Fig. 2. Comparison of newly developed constitutive equations for drift velocity with experimental drift velocities obtained in fully-

developed bubbly flows in a 25.4-mm diameter pipe [14].
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uid velocities are ±10%, the uncertainty in the void-

fraction-weighted mean drift velocity can roughly be

estimated to be ±40%, ±80%, and ±400% for the

gas velocities of 0.5, 1, and 5 m/s, respectively, from

the error propagation. Here, the void-fraction-weighted

mean drift velocity is assumed to be 0.25 m/s in the error

estimation by conservative estimate. Thus, it would be

very difficult to make a quantitative discussion based on

the data for hjfiP 1:0 m/s due to considerably large

error. As an indication of the measurement error, the

error bars for ±30% for relatively low velocity such as

hjfi < 2:0 m/s and for ±60% for relatively high velocity

such as hjfiP 2:0 m/s are shown in the figures.

As can be seen from Figs. 2 and 3, the measured void-

fraction-weighted mean drift velocities for relatively low

liquid velocities such as hjfi < 2:0 m/s appear to decrease

with the increase in the void fraction. As expected from
the example computation discussed in the previous sec-

tion, the differences between the drift velocities in bub-

bly-flow regime calculated by the newly developed

equation and Ishii�s equation are rather small, and both

equations can represent the dependence of the drift ve-

locity on the void fraction marvelously. For higher liquid

velocities such as hjfiP 2:0 m/s and hagiP 0:15, the

measured void-fraction-weighted mean drift velocities

come to agree with the calculated drift velocities in slug-

flow regime rather than the calculated drift velocities in

bubbly-flow regime. This may be attributed to the flow

regime transition from bubbly flow to slug flow. It was

observed experimentally that the formation of cap bub-

bles was initiated at hagi ¼ 0:15 for relatively high liquid

velocity due to strong bubble-bubble interaction [13,14].

Although the measurement errors in the drift velocity are

considerable for relatively high liquid velocity, the newly
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Fig. 3. Comparison of newly developed constitutive equations for drift velocity with experimental drift velocities obtained in fully-

developed bubbly flows in a 50.8-mm diameter pipe [13].
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developed equation for slug-flow regime seems to give

predictions for the measured drift velocities better than

the approximated form of the newly developed equation,

namely Ishii�s equation.
Fig. 4 shows the example comparisons of drift ve-

locities predicted for bubbly and slug flows with the drift

velocities determined by Eq. (10) from local parameters

of developing flows measured at z=D ¼ 6:00 in a 50.8-

mm diameter pipe. In the figure, the solid and broken

lines indicate the drift velocities calculated by the newly

developed equations and Ishii�s equations, respectively.

As an indication of the measurement error, the error

bars for ±30% for relatively low liquid velocity such as

hjfi < 2:0 m/s and for ±60% for relatively high liquid

velocity such as hjfiP 2:0 m/s are shown in the figure.

Similarly to the fully-developed flows, the differences

between the drift velocities in bubbly-flow regime cal-
culated by the newly developed equation and Ishii�s
equation are rather small for relatively low liquid ve-

locities such as hjfi < 2:0 m/s, and both equations can

represent the dependence of the drift velocity on the void

fraction marvelously. For higher liquid velocities such as

hjfiP 2:0 m/s and hagiP 0:15, the measured void-frac-

tion-weighted mean drift velocities come to agree with

the calculated drift velocities in slug-flow regime rather

than the calculated drift velocities in bubbly-flow re-

gime. Although the measurement errors in the drift-ve-

locity are considerable for relatively high liquid velocity,

the newly developed equation for slug-flow regime seems

to give predictions for the measured drift velocities

better than the approximated form of the newly devel-

oped equation, namely Ishii�s equation. Thus, it may be

concluded that the newly developed equations can be

applicable even to a developing flow.
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Fig. 4. Comparison of newly developed constitutive equations for drift velocity with experimental drift velocities obtained in devel-

oping bubbly flows in a 50.8-mm diameter pipe [13].
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The effect of the wall friction on the drift velocity

would be significant for some extreme flow conditions

such as very high liquid flow and microgravity condi-

tions. Thus, the precise formulation of the drift velocity

presented in this study will be important for such ex-

treme flow conditions. In order to reevaluate the newly

developed constitutive equations for drift velocity, ex-

tensive experimental works to obtain accurate data

bases for such extreme flow conditions should be ad-

dressed in the future study.
6. Conclusions

In view of the practical importance of the drift-flux

model for two-phase flow analysis in general and in the

analysis of nuclear-reactor transients and accidents in
particular, the distribution parameter and the drift ve-

locity have been studied for various flow regimes. The

obtained results are as follows:

(1) The constitutive equations that specify the distribu-

tion parameter in various flow regimes have been

discussed briefly.

(2) The constitutive equations that specify the relative

motion between phases in various flow regimes have

been derived by taking into account the effect of

the wall friction on the relative velocity between

phases.

(3) The example computation of the newly developed

constitutive equations for drift velocity has been per-

formed, and the newly developed equations have

been compared with the approximated form of the

newly developed equations, namely Ishii�s equations.
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(4) A comparison of the newly developed constitutive

equations for drift velocity with fully-developed

bubbly-flow data shows a satisfactory agreement.

It has also been confirmed experimentally that the

newly developed equations can be applicable to de-

veloping bubbly flows.

(5) For relatively low liquid velocity conditions, the dif-

ference between the drift velocity calculated by the

newly developed equations and Ishii�s equation is in-

significant, whereas the difference comes to be signif-

icant for relatively high liquid velocity conditions.

The example computation for D ¼ 10:0 mm and

hagi ¼ 0:10 indicates that the difference reaches to

70% at hjfi ¼ 10 m/s.
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